(14) T. C. Farrar and E. D. Becker. '"Pulse and Fourier Transform NMR'", Academic Press, New York, 1971, p 20.
(15) J. T. Gerig, G. B. Matson, and A. D. Stock, J. Magn. Reson., 15, 382 (1974).
(16) S. J. Opella, D. J. Nelson. and O. Jardetsky. J. Chem. Phys., 64, 2533 (1976).
(17) J. T. Gerig, J. Am. Chem. Soc., 99, 1721 (1977).
(18) D. W. Scott, D. R. Douslin. J. F. Messerly, S. S. Todd, I. A. Hossenlopp, T. C. Kincheloe, and J. P. McCullough, J. Am. Chem. Soc., 81, 1015 (1959). A structure of benzotrifluoride in a nematic solvent has been reported: J . Degelan. P. Diehl, and W. Niederberger, Org. Magn. Reson., 4. 721-723 (1972).
(19) L. J. Berliner and S. S. Wong. J. Biol. Chem., 249, 1668 (1974).
(20) L. J. Berliner and B. H. Landis in "Nuclear Magnetic Resonance in Molecular Biology." B. Pullman, Ed., D. Reidel Publishing Co.. Dordrecht. Holland. 1978. pp 311-322.
(21) A. Kalk and H. J. C. Berendsen, J. Magn. Reson., 24, 343 (1976).
(22) L. G. Werbelow and A. G. Marshall. J. Magn. Reson., 11, 299 (1973).
(23) G. B. Matson, J. Chem. Phys., 65. 4147 (1976).
(24) J. H. Noggle and R. E. Schirmer, "The Nuclear Overhauser Effect", Academic Press. New York. 1971, p 45.
(25) I. Solomon, Phys. Rev., 99, 559 (1955)
(26) D. E. Woessner, J. Chem. Phys., 36, 1 (1962).
(27) R. Rowan III, J. A. McCammon, and B. D. Sykes, J. Am. Chem. Soc., 96. 4773 (1974).
(28) W. E. Hull and B. D. Sykes, J. Mol. Biol. 98.121 (1975).
(29) (a) M. W. Pandit and M. S. Narasinga Rao, Biochemistry. 14, 4106-4110 (1975); (b) M. J. Gilleland and M. L. Bender. J. Biol. Chem., 251, 498-502 (1976): (c) R. Tellam and D. J. Winzor, Biochem. J., 161, 687-694 (1977).
(30) T. A. Horbett and D. C. Teller, Biochemistry, 12, 1349 (1973).
(31) (a) K. E. Neet and S. E. Brydon, Arch. Biochem. Biophys., 136. 223 (1970): (b) K. E. Neet, K. M. Sackrison, G. R. Ainslie, and L. C. Barritt, ibid., 160.

569 (1974).
(32) A. N. Kuznetsov, B. Ebert. and G. V. Gyul Khandanyan, Mol. Biol. (Moscow), 9. 871 (1975).
(33) W. L. C. Vaz and G. Schoellmann, Biochim. Biophys. Acta, 439, 206 (1976).
(34) A. Gierer and K. Wirtz, Z. Naturforsch. A. 8. 532 (1953).
(35) R. C. Weast. 'Handbook of Chemistry and Physics", Vol. 50, Chemical Rubber Publishing Co., Cleveland, Ohio, p F-4.
(36) E. S. Gould, 'Mechanism and Structure in Organic Chemistry", Holt, Rinehart and Winston. New York, 1959, p. 51.
(37) (a) K. Wüthrick and G. Wagner, Trends Biochem. Sci., 3. 227-230 (1978); (b) I. D. Campbell, C. M. Dobson, G. R. Moore, S. J. Perkins, and R. J. P. Williams, FEBS Lett., 70, 96-100 (1976).
(38) Reference 24, p 28.
(39) (a) J. E. Anderson and W. P. Slichter, J. Chem. Phys.. 43, 433 1965); (b) A. M. I. Ahmed and R. G. Eades. J. Chem. Soc. Faraday Trans. 2, 1623 (1972).
(40) T. E. Bull and J. Jonas. J. Chem. Phys., 52. 1978-1983 (1970).
(41) J. Angerer and W. Suchanski. J. Magn. Reson., 21, 57-65 (1976).
(42) T. E. Burke and S. I. Chan. J. Magn. Reson., 2. 120 (1970).
(43) B. R. Appleman and B. P. Dailey, Adv. Magn. Reson., 7, 272 (1974).
(44) L. G. Werbelow and D. M. Grant, Adv. Magn. Reson., 9, 190-301 (1977).
(45) L. G. Werbelow. J. Magn. Reson., 34, 123-127 (1979).
(46) H. Jensen and K. Schaumburg, Mol. Phys., 22, 1041 (1971).
(47) J. B. Lambert and L. G. Greifenstein, J. Am. Chem. Soc., 95, 6150 (1973).
(48) (a) I. B. Golovanov, V. N. Gazleov, I. A. Soboleva, and V. V. Smolyaninov, J. Gen. Chem. USSR (Engl. Transi.), 43, 905 (1973): (b) B. Kaufman. M.S. Thesis, State University of New York. Stony Brook, 1972.
(49) W. E. Hull and B. D. Sykes, Biochemistry, 15, 1535 (1976).
(50) J. L. Lippert. D. Tyminski, and P. J. Desmeules, J. Am. Chem. Soc., 98. 7075 (1976).

Insertion of Tetrafluoroethylene into the $\mathrm{Fe}-\mathrm{Fe}$ Bond of $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$, Its Thermal Rearrangement to a Bridging Carbene Ligand, and the Transformation of the Carbene to a Perfluoromethylcarbyne Ligand. Structures of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ at $-162{ }^{\circ} \mathrm{C}$

J. J. Bonnet, ${ }^{\text {la }}$ R. Mathieu, ${ }^{\text {1a }}$ R. Poilblanc, ${ }^{* 1 a}$ and James A. Ibers*1b
Contribution from the Laboratoire de Chimie de Coordination, B.P. 4142. 31030 Toulouse-Cedex. France, and the Department of Chemistry, Northwestern University: Evanston. Illinois 60201. Received March 23, 1979

Abstract

The insertion of tetrafluoroethylene into the $\mathrm{Fe}-\mathrm{Fe}$ bond of the dinuclear complex $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ is photochemically induced. When the temperature of the reaction is stabilized at $20^{\circ} \mathrm{C}$. the major product is the yellow dinuclear species $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(1)$, where $\mathrm{C}_{2} \mathrm{~F}_{4}$ bridges the Fe atoms with two $\sigma(\mathrm{C}-\mathrm{Fe})$ bonds. the $\mathrm{C}-\mathrm{C}$ bond being parallel to the Fe -Fe axis. When the temperature is higher, i.e., $35{ }^{\circ} \mathrm{C}$. the product is the red dinuclear species $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(2)$, which contains a $>\mathrm{CF}_{-} \mathrm{CF}_{3}$ carbene bridge. It is possible by heating 1 to obtain 2 and a mechanism for this reaction is proposed, based in part on a study of the action of BF_{3} on 1 . The action of BF_{3} on 2 , followed by the addition of trimethylphosphine, affords $\left.\left[\mu\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}\left(\mathrm{PCH}_{3}\right)_{3}\right)_{2}\left(\mathrm{CCF}_{3}\right)\right]\left[\mathrm{BF}_{4}\right]$ (7), which may be a perfluoromethylcarbyne complex. A proof for the two different kinds of insertion of $\mathrm{C}_{2} \mathrm{~F}_{4}$ is presented in the form of crystal structure determinations of 1 and 2 . In 1 each iron atom is octahedrally coordinated to three carbonyl groups, two bridging S atoms. and one C atom of $\mathrm{C}_{2} \mathrm{~F}_{4}$. The $\mathrm{Fe}-\mathrm{Fe}$ separation is 3.311 (1) \AA, the dihedral angle around the S atoms is 135.0°, and the average $\mathrm{Fe}-$ $\mathrm{S}-\mathrm{Fe}$ angle is 91.6°. Compound $\mathbf{1}$ crystallizes in the orthorhombic space group $D_{2 h}^{15}-P b c a$ in a cell of $a=15.029(8), b=13.561$ (5). $c=15.437(8) \AA$. Compound 2 crystallizes with eight formula units in space group $C_{2 h}^{5}-P 2_{1} / c$ of the monoclinic system in a cell of dimensions $a=11.545(3), b=16.681(5), c=16.830(6) \AA$ with $\beta=97.86(2)^{\circ}$. Based on 2471 and 4416 unique reflections for 1 and 2, respectively, the structures were refined by full-matrix least-squares techniques to conventional agreement indices (on F) of $R=0.044$ and $R_{w}=0.049$ for 1 and $R=0.039$ and $R_{w}=0.048$ for 2. In 2. each iron atom is also octahedrally coordinated, being bound as in 1 to three carbonyl groups, two bridging S atoms, but here to the same bridging C atom of the $>\mathrm{CF}-\mathrm{CF}_{3}$ carbene group. The Fe-Fe separation averages $2.963 \AA$. the dihedral angle around the sulfur atoms is 107.2°. and the average $\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$ angle is 79.39°. The $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ unit is more compact in 2 than in $\mathbf{1}$ but less compact than in the starting material $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$. The flexibility of such molecules around the $\mathrm{S}-\mathrm{S}$ axis, together with the reactivity of the $\mathrm{Fe}-\mathrm{Fe}$ bond, is discussed.

The study of the reactivity of the metal-metal bond in dinuclear complexes toward alkynes. alkenes. or more generally small unsaturated molecules is an increasing field of interest.

This is particularly true for dinuclear complexes with metal to metal multiple bonds. ${ }^{2,3}$ However, insertion reactions of alkynes and alkenes into metal-metal single bonds in dinuclear

Table I. Summary of Crystal Data and Intensity Collection

compd	$\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(1)$	$\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (2)		
lormuli	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$	$\mathrm{C}_{111} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$		
Pormula weight	473.97 amu	473.97 :mu		
a (att-162 ${ }^{\circ} \mathrm{C}$)	15.029 (8) \AA	11.545 (3) \AA		
b	13.561 (5) \AA	16.681 (3) \AA		
'	15.437 (8) \AA	16.830 (6) \AA		
β		97.86 (1) ${ }^{\circ}$		
V	$3146 \AA^{\text {A }}$	$3211 \AA^{3}$		
ℓ	8	8		
density (cilled. $-162^{\circ} \mathrm{C}$	$2.00 \mathrm{~g} \mathrm{~cm}^{-3}$	$1.96 \mathrm{~g} \mathrm{~cm}^{-3}$		
density (measured $\left(20^{\circ} \mathrm{C}\right)$ in aqucous ZnCl_{2})	$1.90 \mathrm{~g} \mathrm{~cm}^{-3}$	$1.85 \mathrm{~g} \mathrm{~cm}^{-3}$		
spilce group	$D_{2 h}^{15}$-Pbca			
crystal dimensions	$0.175 \times 0.092 \times 0.278 \mathrm{~mm}$	$0.146 \times 0.252 \times 0.219 \mathrm{~mm}$		
boundiry fices of the prism	1001\%, (210), (210), (2T0), (210)	\{100\}, 0011$\}$		
crystal volume	$0.0425 \mathrm{~mm}^{3}$	$0.0784 \mathrm{~mm}^{3}$		
temp	$-162^{\circ}{ }^{\circ}{ }^{\text {a }}$	$-162{ }^{\circ} \mathrm{C}$		
radiation	Mo K from monochromator $\left(\lambda\left(\mathrm{MoK} \alpha_{1}\right)=\right.$ $0.70930 \AA)$	Mo K α from monochromator		
lincalr absorption coefficient	$21.7 \mathrm{~cm}^{-1}$	$21.2 \mathrm{~cm}^{-1}$		
transmission factors	0.433-0.708	0.640-0.763		
receiving aperture	$4.0 \times 4.0 \mathrm{~mm}: 30 \mathrm{~cm}$ from crystal	$4.0 \times 4.5 \mathrm{~mm}$: 30 cm from crystal		
takc-oll angle	3.2°	$2.6{ }^{\circ}$		
sean speed	2° in $2 \theta / \mathrm{min}$	2° in $2 \theta / \mathrm{min}$		
scan range	$0.7{ }^{\circ}$ below $\mathrm{K} \alpha_{1}$ to 0.7° above $\mathrm{K} \alpha_{2}$	$0.6{ }^{\circ}$ below $\mathrm{K} \alpha_{1}$ to 0.6° above $\mathrm{K} \alpha_{2}$		
batckground counts	10 s with rescin option ${ }^{\text {b }}$	10 s with rescin option		
20 limits	$2.5-56^{\circ}$	$2.5-50^{\circ}$		
linal no. of variables	254	433		
unique data used	$2471 F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$	$4416 F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$		
$R=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / / \Sigma\right\| F_{0}\right\|\right.$	0.044	0.039		
$\begin{gathered} R_{w}=\left(\sum_{w}\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} /\right. \\ \left.\Sigma w F_{0}^{2}\right)^{1 / 2} \end{gathered}$	0.049	0.048		
stiandard crror in an observation of unit wcight	1.22 e	1.29 e		

" The low-lemperature system is based on a design by J. C. Hulfman. Ph.D. Thesis, Indiana University, 1974. ${ }^{\text {b }}$ The diffractometer was run under the Vinderbilt disk oriented system (Lenhert, P.G. J. Appl. Crystallogr. 1975, 8. 568).
complexes are less studied. ${ }^{4-6}$ Furthermore, although the discovery of the first transition-metal carbene was reported 15 years ago. ${ }^{7}$ little is known about carbenes bound to two metal centers. ${ }^{1}$?

We have shown recently ${ }^{13}$ that with photochemical activation it is possible to insert the alkynes $\mathrm{F}_{3} \mathrm{CC} \equiv \mathrm{CCF}_{3}$ or $\mathrm{H}_{1} \mathrm{COOCC} \equiv \mathrm{CCOOCH}_{3}$ into the $\mathrm{Fe}-\mathrm{Fe}$ bond of $(\mu(\mathrm{SR})-$ $\left.\mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ complexes $\left(\mathrm{R}=\mathrm{CH}_{3}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{5}$). We have now extended this study to the insertion of $\mathrm{C}_{2} \mathrm{~F}_{4}$. We find that not only does $\mathrm{C}_{2} \mathrm{~F}_{4}$ insert directly into the $\mathrm{Fe}-\mathrm{Fe}$ bond. but it rearranges thermally to a bridging carbene ligand which can be transformed to a perfluoromethylcarbyne ligand. The results of these investigations are presented here.

Experimental Section

All reactions were carried out under a pure dinitrogen atmosphere using Schlenk tubes and vacuum line procedures. Infrared spectra (hexadeenne solutions) were recorded on a Perkin-Elmer 225 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian A-60A spectrometer and ${ }^{19} \mathrm{~F}$ NMR spectra on a Perkin-Elmer R 10 spectrometer (dichloromethane solutions). Elemental analyses were performed by the Service Cenaral de Microanalyse du CNRS. The starting material $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ was purchased from Pressure Chemical Co. and $\mathrm{C}_{2} \mathrm{~F}_{4}$ wass generated by pyrolysis of Teflon under vacuum.

Preparation of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{46}\left(\mathbf{1} .\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}\right.\right.$ $(0.5 \mathrm{~g})$ was dissolved in benzene and introduced into a vessel fitted with a Tellon stopcock. From a vacuum line a tenfold excess of $\mathrm{C}_{2} \mathrm{~F}_{4}$ was condensed into the vessel. The stirred solution was then irradiated at 2()$^{\circ} \mathrm{C}$ For 16 h using a water-cooled 150 -W Original Hanau TQ 150 mercury vapor lamp placed approximaty 10 cm from the vessel. At the end of the reacrion the benzene wals eviporated to dryness, the residuc wis dissolved in a small amount of toluene and filtered, and then an equal amount of pentane was added. The solution was then conled to $-20^{\circ} \mathrm{C}$. Yellow parallelepipeds were obiained $(0.210 \mathrm{~g} .33 \%$ yield), mp $93^{\circ} \mathrm{C}$ dec. Anal. Calded for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}: \mathrm{C}, 25.31: \mathrm{H}$.
1.26: F. 16.03. Found: C. 25.27: H, 1.33; F. 15.64. IR: $\boldsymbol{\nu}(\mathrm{CO}) 2100$ vw. 2084 vs. $2040 \mathrm{~s} .2033 \mathrm{~s} \mathrm{~cm}^{-1} . \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta 2.36\left(\mathrm{SCH}_{3}\right.$. s), $1.86 \mathrm{ppm}\left(\mathrm{SCH}_{3}, \mathrm{~s}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{CCl}_{3} \mathrm{~F}$ as reference. AB spin system: $\delta_{\mathrm{A}} 56.4, \delta_{\mathrm{B}} 61.9 \mathrm{ppmi} ; J_{A B}=227 \mathrm{~Hz}$.

Preparation of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{6}\right.$ (2). This compound wis prepared in the same way as 1 except that the solution was irradiated at $35^{\circ} \mathrm{C}$ using a $500-\mathrm{W}$ Original Hanau TQ 718 water-cooled mercury valpor lamp. Eviaporition of the solvent give al green product, 3 (vide inltra). Pentane was then added and CO wis bubbled through the solution. The red compound $\mathbf{2}$ was regenerated along with some amount of the starting compound $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$. The pentine solution was filtered and cooled to $-20^{\circ} \mathrm{C}$. Red. air-stable crystals of 2 were obtained ($0.250 \mathrm{~g} .40 \%$ yield), $\mathrm{mp} 80^{\circ} \mathrm{C}$. Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}: \mathrm{C}, ~ 25.31$; H, 1.26: F, 16.03. Found: C. 25.39: H, 1.29: F. 16.03. IR: ν (CO) 2095 w, 2091 viv, 2074 vs, 2069 m (sh), 2027 s (broid), $2021 \mathrm{sh} \mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR: $\delta 2.17,2.07$ (SCH_{3} anti isomer): 2.15 ppm broad. SCH_{3} (syn isomer). ${ }^{19} \mathrm{~F}$ NMR: $\delta 70$ (3 F) (q). 138 $\mathrm{ppm}(1 \mathrm{~F})(\mathrm{q}), J_{1 \mathrm{l}}=7 \mathrm{~Hz}$ (syn isomer); $\delta 68.8(3 \mathrm{~F})(\mathrm{d}) .136 .8 \mathrm{ppm}$ (1 F) (4). $J_{\mathrm{FF}}=7 \mathrm{~Hz}$ (anti isomer).

Isolation of the Green Compound 3. In the above preparation of 2. alter evaporation of benzene, the green precipitate wis washed with pentane and dried. The product was then dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and immediately precipitated by adding a small :amount of pentine. Anal. Caled for $\left[\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}\left(\mathrm{CO}_{2}\right)_{3}\right]_{3}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\right]_{11}$: C. 22.87: H, 1.55: F, 13.17. Found: C, 22.49: H, 1.48: F. 12.77.

Preparation of $\left.\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{4}\right)_{4}\left(\mathrm{P}_{(} \mathrm{CH}_{3}\right)_{3}\right)_{2}$ (4) and
 pentane was added at room temperature a stoichiometric quannity of $P\left(\mathrm{CH}_{3}\right)_{3}$. Gissous CO was evolved and respectively 4 or 5 precipitated als yellow (4) or dark red (5) crystals. They were purified by recrysballization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane mixture at $-20^{\circ} \mathrm{C}$. yield 90%. $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fc}_{2}\left(\mathrm{CO}_{4}\right)_{4}\left(\mathrm{P}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}(4), \mathrm{mp} 150^{\circ} \mathrm{C} \mathrm{dec.} \mathrm{Anal.}}\right.$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}: \mathrm{C}, 29.47 ; \mathrm{H}, 4.21 ; \mathrm{P}, 10.87 ; \mathrm{F}, 13.33$. 1/sund: C, 29.50: H, 4.18: P, 10.79: F. 13.43. IR ν (CO): 2027 w, 2013 s. $1965 \mathrm{~s} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution $){ }^{1} \mathrm{H}$ NMR: $\delta 1.86\left(\mathrm{SCH}_{3}\right), 1.45$
 $\mu\left(\mathrm{SCH}_{3}\right) \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{4}\right)_{4}\left(\mathrm{P}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}(5) \mathrm{mp} 140^{\circ} \mathrm{C} \mathrm{dec} \text {. Anal. }}\right.$

Table II. Positional and Thermal Parameters for the Atoms of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (1)

				$31^{8} O R A^{2}$			812×13		823
FE(1)	0.4540051451	0.247543(51)	$0.466341 / 461$	13.481291	16.901331	11.471291	2.051391	-3.651261	-0.71(27)
FE(2)	$0.313861(48)$	$0.415425(481$	0.3911971451	16.781331	16.101351	10.171301	0.441291	-3.341271	1.571271
S(11)	$0.317850(791$	0.3105481851	0.5086891751	12.74 (51)	18.041581	9.81 (48)	-0.261461	0.401431	0.801421
5121	0.465050 (81)	0.4047421841	0.4099981781	15.671541	19.451621	8.121471	-2.131471	0.441421	-1.31(44)
F111	0.358011601	0.115911581	0.350961581	25.31451	$23.6138)$	25.61481	5.11311	-23.7(30)	-5.51291
F(2)	0.445131481	0.216711731	0.283414471	20.91311	47.3 (531	15.21281	-3.81341	$5.0(24)$	-16.21331
F(3)	0.232941401	0.230181431	0.35373 (59)	16.7(30)	28.3(38)	40.41471	-6.61241	-1.71271	-11.21301
$F(4)$	0.312931581	0.289731501	0.243001401	53.91681	49.61431	11.91261	24.41451	-14.81321	-12.81281
F(1)	0.324951751	0.13441761	0.38011174)	30.91551	$20.2(51)$	32.61521	-16.51421	-8.61391	7.81391
F 21$)^{\text {- }}$	0.436111641	0.162181851	0.29705 (551	29.61431	48.31601	11.31341	20.31441	-3.91291	-17.2(39)
$F(31)^{*}$	0.250161511	0.253271561	$0.29064(65)$	23.71351	28.21401	45.0 (68)	5.41351	-20.31441	-14.4(43)
F(4) ${ }^{\text {c }}$	0.373731751	0.312351501	0.239011441	58.91671	28.41391	8.4.301	-0.21371	4.91311	-4.26261
O(1)	0.621291251	0.182811311	0.386561281	16.81181	54.11271	37.11231	10.7181	0.91171	-10.51201
0121	0.545561251	0.318931281	0.626171231	24.91191	37.51231	15.81261	-0.51181	-7.31151	-2.01161
0131	0.409131291	0.054661261	0.542171271	42.31231	24.51211	20.11211	2.31101	-1.71181	6.31171
$0(41$	0.331881301	0.524531331	0.228581271	40.21241	66.8(30)	20.71191	2.41221	-6.31181	$23.0120)$
$0(5)$	0.315271241	0.594881261	0.503031241	24.41191	23.11211	[5.01181	2. 31161	-2.21161	-5.3161
0161	0.118561261	0.404131271	0.385821261	23.21201	35.11241	29.91221	-2.61171	-8.1(161	2.71181
c 111	0.556621351	0.256241381	0.418011361	17.61261	27.21281	19.61251	1.7 (211	-7.41201	-5.81221
C(2)	0.511791341	0.291391371	0.565631341	14.41231	26.81271	16.21241	2.71211	2.91191	1.91211
C(3)	0.427701361	0.128881391	0.512241351	21.21261	21.61271	20.51251	2.61211	-5.11201	-0.61211
C(4)	0.324211371	0.483501391	0.291651361	22.61271	34.61301	20.31261	6.31231	-1.41221	4.91221
C(5)	0.314891341	0.528011351	0.459781351	15.01231	20.61261	20.11241	1.26201	2.31201	3.5121)
C 161	0.194201371	0.409871351	0.386971341	22.81271	18.42251	16.61221	0.71211	-5.41201	1.31201
c $\mathrm{Cl}^{\text {c }}$	0.335781351	0.385391371	$0.60469(32)$	19.61241	28.41281	10.61201	4.21211	3.81181	-4.41919
C(8)	0.527841371	$0.40934(42)$	0.308171331	32.11281	39.91341	14.61211	-14. 31261	11.41201	-3.21231
C(9)	0.386151351	0.210741361	0.357091331	18.21241	21.1251	13.12221	-1.1)211	$0.2(18)$	-5.01191
cilol	0.317931451	0.28689(40)	0.325751391	46.21361	29.11301	26.0128)	9.01281	-23.31271	-10.98241
M1C ${ }^{\text {c }} 1$	0.328	0.346	0.656	2.6					
H2C671	0.395	0.411	0.605	2.6					
H3C(7)	0.295	0.439	0.606	2.6					
HaCesl	0.590	0.412	0.319	3.2					
H2Cesi	0.515	0.351	0.274	3.2					
	0.510	0.466	0.275	3.2					

${ }^{a}$ Estimated standard deviations in the least significant figure(s) are given in parentheses in this and all subsequent tables. ${ }^{b}$ The form of the anisotropic thermal ellipsoid is $\exp \left(-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right.$). Here and in Table IV the thermal coefficients have been multiplied by 10^{4}

Called for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}$: C. 29.47; H. 4.21: P. 10.87: F. 13.33. Found: C. 29.38: H. 4.23: P. 10.52: F. 13.10. IR $\nu(\mathrm{CO}): 2017$ w. 1977 s. $1953 \mathrm{~s} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.86\left(\mathrm{SCH}_{3}(\mathrm{~s})\right)$, 2.20 $\left.\left(\mathrm{SCH}_{3}\right)(\mathrm{d})\right) J_{\mathrm{FH}}=0.9 \mathrm{~Hz}, 1.30 \mathrm{ppm} \mathrm{PCH} 3 . J_{\mathrm{PH}}=7.8 \mathrm{~Hz},{ }^{19} \mathrm{~F} \mathrm{NMR:}$ $\delta 66.6$ (3 F) (broad signal). 130 ppm (1 F) (broad signal).

Preparation of $\left.\mid \mu\left(\mathbf{S C H}_{3}\right)_{2} \mathrm{Fe}_{2}\left(\mathrm{CO}_{4}\right)_{4}\left(\mathrm{P}_{\left(\mathrm{CH}_{3}\right)}\right)_{3}\right)_{2}\left(\mathrm{FCCF}_{2}\right) \mid\left[\mathrm{BF}_{4} \mid\right.$ (6). To a ycllow solution of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added a stoichiometric 4u:lnity of $\mathrm{BF}_{3} \cdot \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$. The solution turned violet. Chilled diethyl either was added ($1: 1$ mixture). The solution was then kept at $-20^{\circ} \mathrm{C}$ and maroon crystals precipitated. $\left[\mu\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{4}-\right.$ $\left.\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\mathrm{FCCF}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$. mp $72{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{2+} \mathrm{BF}_{7} \mathrm{Fe}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}: \mathrm{C}, ~ 26.33: \mathrm{H}, 3.76$; F. 20.84. Found: C. 26.16: 11. 3.71: F, 20.66. 1R $\nu(\mathrm{CO}): 2054 \mathrm{w}, 2040 \mathrm{~s}, 2003 \mathrm{~s} \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution), $\nu(\mathrm{C}=\mathrm{C}) 1600 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 2.81,2.28\left(\mathrm{SCH}_{3}\right.$, broad
 $\left(\mathrm{P}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right.$.
Preparation of $\left[\mu\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}\left(\mathrm{P}_{(} \mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\mathrm{CCF}_{3}\right) \mid\left[\mathrm{BF}_{4}\right]$ (7). To a soluion ol $\mathbf{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at room temperature a stoichiometric amount of $\mathrm{BF}_{3} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$. The reddish solution turned bright red and diethyl ether was alded. Evolution of CO was detected, with 1 mol ul' CO being evolved per mol of 5 . From the solution at $-20^{\circ} \mathrm{C}$ dark red erystals precipitated. $\left[\mu\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3-}\right.$ $\left.\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)\right)_{2}\left(\mathrm{CCF}_{3}\right)\right]\left[\mathrm{BF}_{4}\right]$, $\mathrm{mp} 182{ }^{\circ} \mathrm{C}$ dec. Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{BF}_{7} \mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}: \mathrm{C}, 25.57$; H. 3.93; F, 21.80. Found: C. 25.55 ; H. 3.72: F. 21.74. IR $\nu(\mathrm{CO}): 2042$ vs. 2015 s . $1984 \mathrm{w}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.62\left(\mathrm{SCH}_{3} . q\right) J_{\mathrm{PH}}=2.6 \mathrm{~Hz}, 2.13\left(\mathrm{SCH}_{3}, \mathrm{~s}\right), 1.96$ $\left(\mathrm{P}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right) J_{\mathrm{PH}}=10 \mathrm{~Hz} .1 .65 \mathrm{ppm}\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right) J_{\mathrm{PH}}=11 \mathrm{~Hz} .{ }^{19} \mathrm{~F}$ NMR: $\delta 78.4 \mathrm{ppm}$ (CF_{3}, broad signal).
Collection and Reduction of the X-ray Data. A. Compound 1. Preliminary photographic data revealed that crystals of 1 belong to the orthorhombic system and show systematic extinctions ($0 k l, k=2 n$ $+1: h 0 l, I=2 n+1: h k 0, h=2 n+1$) consistent with the space group $D_{2 h}^{15}-P b c a$. All cell constants were obtained as previously described ${ }^{14}$
by a least-squares refinement of the setting angles of 19 hand-centered reflections which had been chosen from diverse regions of reciprocal space with $24^{\circ}<2 \theta(\mathrm{Mo})<26^{\circ}$. These cell constants and other pertinent data are presented in Table 1. Intensity data were collected at $-162{ }^{\circ} \mathrm{C}$ on a computer-controlled Picker four-circle diffractometer by procedures standard for this laboratory. ${ }^{15}$ A total of 4564 intensities were recorded out to $2 \theta(\mathrm{Mo})<56^{\circ}$. The data were processed, as described previously. ${ }^{14}$ using a value of p of 0.04 . After processing ${ }^{16}$ only those 2471 unique reflections having $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$ were used in subsequent calculations.
B. Compound 2. Preliminary film data showed that crystals of 2 belong to the monoclinic system and show systematic extinctions ($0 k 0$. $k=2 n+1: h 01, l=2 n+1$) consistent with the space group $C_{2 h}^{5}-P 2_{1} / c$. Cell constants were obtained by a least-squares refinement of the setting of 22 hand-centered reflections with $23^{\circ}<2 \theta(\mathrm{Mo})<$ 26°. These cell constants and other pertinent data are listed in Table 1. Intensity data were collected at $-162^{\circ} \mathrm{C}$. A total of 6218 intensities reflections were recorded out to $2 \theta(\mathrm{Mo})<50^{\circ}$. The data were processed in the normal manner using a value of p of $0.04 .^{14}$ Only those 4416 unique reflections having $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$ were used in subsequent calculations.
Solution and Refinement of the Structures. Complex 1. The two iron atoms together with the two sulfur atoms were located in a normal Patterson synthesis. The positions of the remaining nonhydrogen atoms were obtained through the usual combination of full-matrix least-squares refinements and diflerence Fouricr syntheses. Around the fluorine atoms of the $\mathrm{C}_{2} \mathrm{~F}_{4}$ group eight electron density miximal of heigh $4-5 \mathrm{e} / \AA^{3}$ were located on a difference Fourier map. These maxima correspond to two alternative positions for four fluorine atoms. Owing in large measure to the acquisition of low-temperature ditti, the disorder problem his been resolved, even though the shoriest distance between he maxima is about $0.7 \AA$. During the course of full-miarix, least-squares refinement the positional and hermal pal-

Table IV. Positional and Thermal Parameters for the Atoms of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (2)

ATOM 	A			\cdots		133	812	113	123
	\cdots	-	z	111	$1 ? 2$				
FE(1)A									
	0.0288351521	0.4383471361	$0.1630 n 9(34)$	P5.80(49)	12,791231	9,33(22)	1.16 (26)	2,36(25)	0.07(18)
fe (2)a	-0.038332 1531	0.4337231371	$0.326359(16)$	$24.85(50)$	16.57(25)	$11.21(83)$	3.11(24)	1.75126,	1.0169)
110	$0.476633(54)$	0.3221904061	0.489043 (78)	24.94(50)	13.16(24)	15,381751	$1.90(27)$	1.18(27)	2.221191
FE(2)8	0.569485 (52)	$0.205770(37)$	0.3899191371	P0.79(47)	13.56(23)	י3.56(74)	-n.43(26)	$0.61(26)$	-6.08(18)
S(1)A									
Si2la	0.1195451911	n. 373918 (62)	0.276949 (h3)	22.371791	11.98(38)	13.0	$0.22(44)$	1.67144)	.41(31)
	-0.1365091931	0.384843 (68)	0.206418(64)	21.39(821	18.79(4)	13.50(60)	1.501481	3.06(45)	1.28134)
silid	$0.405984(93)$	$0.277908(68)$	$0.336175166)$	22.67(83)	17.941431	16.40142)	0.56(48)	-0.591461	0.448341
St210	. 221432 (94)	0.329475 (f6)	0.447918(66)	26.091831	14.6.7(4)	15.59(41)	1.84(47)	-0.93146)	-7.571331
Filis									
	-0.09425(22)	$0.57279(14)$	$0.22456(151$	35.91221	15, 361971	21.5110)	6.1621	-4.7(12)	1.831811
Fi2)A	$0.19957(22)$	$0.5445 \times(15)$	$0.30011(15)$	36.01921	16.61701	22.31111	1.56121	-3.9(12)	-6.71(83)
Fi31A	- 115541251	$0.62836(15)$	0.21295 (44.7124	16.8 (10)	26.4171	-3.5(131	5.31141	$5.49(90)$
Fi4) ${ }_{\text {c }}$	$0.11554125)$	0.62 A 6 H ,	0.21296(17)	4.7(7 (${ }^{\text {(}}$	16.8109	26.nit)	-2.5(131	5.3141	5.49 (90)
	$0.04991(25)$	0.67758	$0.33378116)$	68.5(27)	11	23.3(1)	$9.5(14)$	-10.2(141	-11.571901
fil)	$0.54324(22)$	$0.18998(15)$	$0.55885(15)$	40.113?1	23.0(1)	14.4(10)	4,4021	1,3(12)	7.191841
	$0.30024(23)$	0.144791171	0.41803617)	47.0173)	$25.2(12)$	77.4.17)	-10.8(13)	4.21141	1.20(96)
F_{1318}	$0.31763(24)$	0.155689171	0.547671171	$55.5(25)$	30.0(12)	30.4(1)	$4.3014)$	22.8(14)	11.6)101
F14)	61	0.06783(10)	0.492971181	71.51281	15.3(10)	18.7(14)	4.81141	18.4(16)	$6.9796)$
O114				51.3130)					
	-0.10310(29)	0.542771201	$0.043 \mathrm{AR}(18)$	91.31301	29.5 (14)	13.11121	13.11171	2.7(15)	6.6 (11)
0(2)A	0.759891281	0.498081201	$0.1351(1191$	33.61271	? 4.3 (14)	25.2(14)	-6.40.6)	$3.4(151$	6.1111
3) A	0.077801301	$0.29473(90)$	0.05715(20)	54.71311	26.7191	25.7114)	P.00191	4.2117	-16.31121
014) A	-0.23900(31)	0.528591231	0.361541911	55.71331	44.7 (18)	23.2 (151	24.61911	7.5(18)	-6.1(131
0151 A	$0.12114(29)$	$0.49382(21)$	0.453411191	47.41301	34.4 (16)	15.6(13)	3.2 (18)	-2.7(16)	-6.3(12)
01614	-0.10051(28)	$0.28195($ P)	$0.40368($ Pn)	35.6.281	30.7(15)	22.9(14)	-3.8(17)	$5.9115)$	13.1121
01118	$0.47327(32)$	0.34529 (2)	$0.64186(20)$	64.2 (34)	39.4 (17)	15.3(141	$11.3(191$	1.8(17)	-0.31121
01218	17568 (0.302211201	0.472321	31.01291	30.9(15)	29.2(15)	$2.3(16)$	6.6(16)	11.8112)
01310									
	0.4000 (30)	0.494371701	$0.422831 ? 1)$	52.81321	15.0(13)	73.5116)	$5.9(16)$	-3.40181	$4.2(12)$
014)	0.7892412 ml	0.129331191	$0.48645(191$	$40.2(27)$	18.2(13)	22.4(13)	$9.2(16)$	-1.81161	0.41111
015) ${ }^{\text {a }}$	476? 301	0.056011701	0.31441122)	53.0(31)	20.9(14)	76.4117)	-13.3117)	3.71181	-7.5(13)
Ofin			$0.24719(20)$		24.3(15)		-6.16161	5.61161	-8.6112
CII) ${ }^{\text {a }}$,	-2427		(1) 0131					
	-0.151991381	$0.50170(79)$	0.08943 (26)	31.0136)	$25.1170)^{1}$	11.31161	-?.3(32)	$9.2(2 n)$	-3.41151
C(2)A	$0.16907142)$	$0.47433(26)$	0.144971761	48.7(42)	14.7(17)	12.0(16)	- - . 61221	1.3(21)	2.41131
C(3)A	0.031411371		$0.09 \times 50(26)$	24.7(34)	28.8119)	16.6 (17)	-n.9(20)	4.11191	$2.3(15)$
(14)A	-0.16157(45)	0.491881311	0.349021271	$48.5(44)$	30.? 1221	12.0117)	$6.5176)$	-0.31221	-2.61161
C(5)A	0.05885 (40)	0.47040 (79)	$0.41017(271$	36.2(38)	22.4191	15.4(18)	13.0172)	4.1122)	-0.8115)
C(6) 4	-0.07735 (38)	0.340621311	$0.37614(27)$	24.91341	24.3(28)	13.1(17)	5.61831	3.1(19)	4.61161
cipla									
	0.09191 (39)	$0.26677(26)$	0.265341291	35.41371	11.3(16)	25.11191	-0.9170)	$2.2(21)$	$1.0(14)$
C(8) ${ }^{\text {a }}$	-0.26824(38)	$0.44161(28)$	0.173711271	24.61351	21.749)	17.518)	5.81>1)	-1.1(20)	0.1115)
Cigla	$0.00303(40)$	$0.51933(28)$	0.248711277	34.7137)	18.1(18)	14.9(1)	5.36911	-3.4(20)	$8.8(15)$
criola	$0.09682(42)$	0.578781291	$0.27389(79)$	$42.7141)$	20.4(19)	21.2(20)	$3.2(23)$	-0.51231	0.61161
Cllis	$0.45578(39)$	0.337181291	0.574031301	30.71371	21.1 (19)	24.7(2?)	$5.0191)$	4.81221	2.5(16)
cizis									
	$0.27387(41)$	0.308401261	0.47040 (271	41.7(42)	17.0(18)	17.0(17)	$0.8(911$	3.71211	$4.2(14)$
c 310	0.40889 (38)	0.428731291	0.44029 (77)	$25.0(36)$	21.1(20)	16.6 (18)	3.4171)	$0.3120)$	1.3(15)
c14)	$0.69702(38)$	0.157911261	0.44842 (26)	34.7(36)	10.4(16)	17.0 (17)	-1.41701	8.3(28)	$1.0(14)$
c(5)]	$0.51153(38)$	$0.11424130)$	$0.34491128)$	23.3(35)	23.4.20)	21.*(19)	1.01>2)	2.0(20)	3.4 (16)
ci61:	$0.64504(37)$	0.228031261	0.302491281	24.7(34)	14.9 (17)	18.6(10)	$1.5(18)$	-2.2120)	-1.51141
ci7l	$0.44994(40)$	0.357511291	$0.27353(28)$	37.31381	24.3(19)	16.9 (18)	$4.5(92)$	1.2(21)	4.6 (1)5)
Cibla	$0.71818137)$	0.31962 (28)	$0.54237(26)$	26.81341	21.4(10)	17.1(17)	3.01911	-5.2(19)	-6.8(14)
ci918	$0.47356(38)$	0.204151271	0.482721261	31.41361	21.2(18)	13.3(16)	1.7(?)	1.2(19)	3.8 (14)
C(10)	0.379381431	0.14353(29)	0.484501301	45.21421	19.3(19)	25.41211	$4.4(23)$	8.4(24)	$4.5(161$
me(t)									
mpe17)	0.085	0.244	0.316	2.9					
	0.021	0.258	0.230	2.9					
H3e(7)	0.155	0.242	0.244	2.9					
4) crs) $^{\text {d }}$									
	-0.303	0.458	0.218	3.0					
mpe (8)	-0.248	0.488	0.144	3.0					
	-0.321	0.409	0.139	3.0					
le(7)		0.402	0.306	3.1					
Me(7)									
	0.512	0.339	0.246	3.1					
	0.386	0.373	0.235	3.1					
	0.675	0.323	0.587	2.9					
nate(s)									
	0.776	0.361	0.548	2.9					

Figure 1. A sketch of the siructure of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{F}_{2}(\mathrm{CO})_{6}$ without the carbonyl groups to show the two dillerent environments for iluorine aloms $F(2), F(4)$ and $F(1), 1:(3)$.
rimeters of the eight fluorine atoms were allowed to vary independently. A variable occupancy factor, α, was assigned to those four fluorine atoms giving almost a staggered geometry, and the occupancy of the other four fluorine atoms was consarined to $1-\alpha$.

Alomic scattering liactors lor the nonhydrogen atoms were taken lrom the usual tabulation, ${ }^{17}$ whereas the hydrogen scattering factars used were those of Stewarl el al. ${ }^{18}$ Anomalous dispersion terms for the $F e$ and S ittoms were included in $F_{\mathrm{c}}{ }^{19}$

Relinement of an isorropic model converged to values of R and R w of 0.067 and 0.076 . A difference Fourier map clearly revealed the positions of the six H aloms of the two methyl groups. Their positions were ide:lized ($\mathrm{C}-\mathrm{H}=0.95 \AA$). Their contributions to F_{c} were then fixed during the final eycles of relinement which included an isotropic secondary extinction correction and anisotropic thermal parameters lor all but the hydrogen atoms. For each hydrogen atom, an isotopic thermal pirameter was assigned with a value $1.0 \AA^{2}$ greater than that of the C atom to which it is attached.

The linal positional and ahermal parameters of all atoms appear in Tible 11. The occupancy of atoms $F(1)-F(4)$ is 0.54 and that of atoms $\mathrm{F}(1)^{\prime}-\mathrm{F}(4)^{\prime}$ is 0.46 . Tible 111 contains the rool-mein-syuare amplinudes of vibration. ${ }^{-1}$ A listing of the observed and calculated saructure ampliades is available. ${ }^{20}$

Complex 2. The direct methods approach. ${ }^{16}$ based on 499 normalized structure factors, yielded the correct positions of the four Fe and four S atoms belonging to iwo independeni dinuelear molecules in the asymmetric unit. All ot her atoms, including the hydrogen atoms of the methyl groups. were lound in subsequent difference Fourier syntheses. The existence of the $>C$ CCF3 bridge eame as a complete surprise.

Refinement of a completely isotropic model for the iwo independent molecules with no conaribution Trom H :loms converged to vallues ol R ol 0.060 and $R_{\text {w }}$ of 0.074 . A subsequent dilference Fourier map revealed the positions of hydrogen atoms of the methyl groups. These were ireated as in 1. The linal full-matrix least-squares relinements, involving 433 variables and 4416 observations, were carried out by remote hookup 10 the $\operatorname{CDC} 7600$ computer at Lawrence Berkeley Laboraliory. Final values of the parameters of all atoms are given in Table IV. The root-mean-square amplitudes of vibration are listed in Table $V .{ }^{20}$ A listing of the observed and calculated structure amplitudes is arailable. ${ }^{10}$

Results

Syntheses and Reactions. When $\mathrm{C}_{2} \mathrm{~F}_{4}$ is added to a benzene solution of $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ and irradiation is carried out so that the temperature of the solution is ca. $20^{\circ} \mathrm{C}$. a diamagnetic dinuclear compound. $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (1), may be obtained from this solution as yellow crystals. The

Figure 2. Proposed mechanism of rearringement of the $\mathrm{C}_{2} \mathrm{~F}_{4}$ bridging group in $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, 10 give the $>\mathrm{CF} \cdot \mathrm{CF}_{3}$ bridge in $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{6}\right.$.
spectral properties of $\mathbf{1}$ are completely consistent with its solid-state structure as found by diffraction methods (vide infra). Complex 1 shows an infrared spectrum in the $\nu(\mathrm{CO})$ stretching region which is very similar to that observed for $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{~F}_{3} \mathrm{CC} \equiv \mathrm{CCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ in which the alkyne is σ bonded to the two iron atoms. ${ }^{12}$ The ${ }^{1} \mathrm{H}$ NMR spectrum shows clearly that the two SCH_{3} groups are in the anti position. The ${ }^{19}{ }^{9}$ N NR spectrum shows an approximate $A B$ system in a region of resonance for $\mathrm{C}_{2} \mathrm{~F}_{4}$ bridging two metallic centers: ${ }^{21}$ this AB spin system is consistent with the fact that since the SCH_{3} groups are in the anti position two of the four fluorine atoms are indeed nearer to the SCH_{3} group which is in the endo position (Figure 1).

When $\mathrm{C}_{2} \mathrm{~F}_{4}$ is added to a benzene solution of ($\mu\left(\mathrm{SCH}_{3}\right)$ $\left.\mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ and irradiation is carried out so that the temperature of the solution is ca. $35^{\circ} \mathrm{C}$. a different product is obtained. From this red solution a diamagnetic dinuclear complex. $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (2), is obtained as red crystals. The nature of this product was first established from the solid-state crystal structure (vide infra). The spectral properties of this material are consistent with that formulation. The ${ }^{1} \mathrm{H}$ NMR spectrum shows that the complex is a mixture of syn and anti isomers in the ratio $2 / 1$. The ${ }^{19}$ F NMR spectrum shows two sets of signals, a doublet and a quartet, in the ratio $3: 1$ consistent with a rearrangement of the $\mathrm{C}_{2} \mathrm{~F}_{4}$ group into a carbene bridge $>\mathrm{CF}-\mathrm{CF}_{3}$, as in $\mathrm{Co}_{2}(\mathrm{CO})_{7}\left(\mathrm{FCCF}_{3}\right) .{ }^{6}$

It is also possible to effect this rearrangement and obtain 2 by heating 1 in refluxing pentane. This transformation even occurs in the infrared beam of the Perkin-Elmer 225 spectrometer. Compound $\mathbf{2}$ is stable in the solid state but in solution it gives. under vacuum, a green precipitate (3). Compound 3 is soluble in acetone or dichloromethane, but the solution is unstable and quickly turns red. The infrared spectrum shows this red solution to be a mixture of $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ and 2. If CO gas is added to a solution of 3 , the same mixture is readily obtained. Furthermore. if $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ is added. $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{4}\left(\mathrm{P}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)_{2} \quad \text { (5) and }}\right.\right.$ $\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$ are obtained. The instability of $\mathbf{3}$ prevents further characterization, although a chemical analysis of the fresh precipitate agrees satisfactorily with the formulation $\left(\left(\mu\left(\mathrm{SCH}_{3}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right)_{3}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)\right)_{n}$.

The fluorine migration which leads from $\mathbf{1}$ to $\mathbf{2}$ is a wellestablished reaction, as it occurs. for instance. in the reaction of nucleophilic carbonyl metal anions with perfluoroallyl chloride ${ }^{2 ?}$ and in the reactions of hexafluorobuta-1.3-diene

Figure 3. Overall summary of the proposed mechanism and idenified products in the reirringement of the $\mathrm{C}_{2} \mathrm{~F}_{4}$ bridging group to the $>\mathrm{CF}_{-\mathrm{CF}_{3}}$ bridge and to the $C^{-}-\mathrm{CF}_{3}$ ierminal carbyne group.
with hydridopentacarbonylmanganese. ${ }^{23}$ The same type of rcarrangement has also been observed in the reaction of hex:ifluoropropene with $\mathrm{Pt}\left(1.5-\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}$, for which a mechanism has been suggested. ${ }^{21}$ A similar mechanism is proposed here (Figure 2). In the proposed intermediate compound A of Figure 2 there is a $\sigma-\pi$ bonded vinyl group. We can consider the β-carbon atom of this group to be electrophilic, as it is, for instance. in $\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{HC}=\mathrm{CH}_{2}\right)(\mathrm{CO})_{10} .{ }^{24}$ Thus it seems reasonable that an attack of F^{-}on this carbon atom of the CF_{2} group generates the carbene compound 2. Attempts to isolate the proposed intermediate compound A of Figure 2 using $\mathrm{BF}_{3} \cdot \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$, a fluoride ion abstractor for metal perfluoroalkyl compounds. ${ }^{25}$ failed when starting with compound 1. But if $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ is added. two CO groups being substituted, the expected parent compound $\left[\mu\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left(\mathrm{P}^{\left.\left.\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\mathrm{FCCF}_{2}\right)\right]\left[\mathrm{BF}_{4}\right] \text { (6) is obtained. When starting }}\right.$ with $\left.\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{4} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$ (4), compound 6 is obtained in better yield. As for compound 4, compound 6 shows three infrared-active bands in the $\nu(\mathrm{CO})$ stretching region but these are shifted to higher frequencies and a new. strong band at $1600 \mathrm{~cm}^{-1}$ appears which is in the region of the $\nu(\mathrm{C}=\mathrm{C})$ stretching frequency of a coordinated fluoro olefin. ${ }^{26}$ Another strong band at $1030 \mathrm{~cm}^{-1}$ is characteristic of $\mathrm{BF}_{4}{ }^{-}$. This result strongly suggests that 6 has structure A of Figure 2. Furthermore, this structure is consistent with the ${ }^{1} \mathrm{H}$ NMR spectrum. which shows the two phosphine ligands to be chemically different. Unfortunately the low solubility of 6 together with its low stability at room temperature did not allow us to obtain its ${ }^{19} \mathrm{~F}$ NMR spectrum.

When a solution of $\mathbf{6}$ in dichloromethane is left at room temperature, the color rapidly changes from violet to deep red and 1 mol of CO gas is evolved per mol of 6 . Infrared spectra in the $\nu(\mathrm{CO})$ stretching region show that a new compound 7 has been formed which exhibits three infrared-active $\nu(\mathrm{CO})$ bands at slightly lower frequencies and with different relative intensities than 6. The ${ }^{19} \mathrm{~F}$ NMR spectrum shows a single resonance at 78.4 ppm . Furthermore compound 7 is obtained when 5 is reacted with 1 equiv of $\mathrm{BF}_{3} \cdot \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$. Compound 7 analyzes as $\left[\mathrm{Fe}_{2}\left(\mathrm{SCH}_{3}\right)_{2}(\mathrm{CO})_{3}\left(\mathrm{P}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\mathrm{CCF}_{3}\right)\right]\left[\mathrm{BF}_{4}\right]$. As the ${ }^{1} \mathrm{H}$ NMR spectrum of 7 shows that the phosphine ligands are chemically different, we propose a structure for 7 in which the $\mathrm{C}-\mathrm{CF}_{3}$ group is a terminal carbyne ligand and in which there is an $\mathrm{Fe}-\mathrm{Fe}$ bond. Such a compound would appear to be the first example of a perfluoroalkylcarbyne complex. At this point, a question remains unanswered: how does 6 rear-

Figure 4. Stereoscopic view of a unit cell of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. The x axis is horizontal from left to right, the y axis is perpendicular from bottom to top, and the z axis comes out of the paper. The vibrational ellipsoids are drawn at the 30% level. Hydrogen atoms are omitted. Disorder of the fluorine atoms is not shown.

Figure 5, A perspective representation of a molecule of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. The vibrational ellipsoids are drawn an 50% probability level. The labeling scheme is also shown.
range to give 7? The most probable route seems to be the abstraction of F^{-}from $\mathrm{BF}_{4}{ }^{-}$giving compound 5 which is then attacked by the liberated BF_{3} to give compound 7 after CO evolution. These proposed reactions are sketched in Figure 3.

Description of the Structures of 1 and 2. The crystal structure of 1 consists of the packing of eight dinuclear molecules. A stereoscopic packing diagram of the unit cell is shown in Figure 4. Bond distances and bond angles are given in Tables VI and VII, respectively. Figure 5 shows a perspective view of molecule 1 which includes the labeling scheme, while the stereoscopic view in Figure 6 depicts the disorder of the fluorine atoms. Table Vll1 ${ }^{20}$ presents information on least-squares planes. The dinuclear molecule has roughly a mirror plane containing the two sulfur bridging atoms and the midpoint between the two iron atoms. Each iron atom is octahedrally coordinated to two bridging sulfur atoms of the methylthiolato groups, three carbon atoms of the carbon groups, and one carbon atom of the $\mathrm{C}_{2} \mathrm{~F}_{4}$ group. The "flap" angle, the dihedral angle between the two planes containing S(1), S(2), and the equatorial carbon atoms of the carbonyl groups, is 135.0° (Table VIII). the separation of the two iron atoms is 3.311 (1) \AA, and the mean $\mathrm{Fe}(1)-\mathrm{S}-\mathrm{Fe}(2)$ angle is 91.6 (1) ${ }^{\circ}$. These values show clearly that the dinuclear unit is opened around the $\mathrm{S}-\mathrm{S}$ axis compared with the $\left(\mu\left(\mathrm{SC}_{2} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ complex. ${ }^{27}$ The $\mathrm{C}_{2} \mathrm{~F}_{4}$ group bridges the two iron atoms through two $\sigma(\mathrm{C}-\mathrm{Fe})$ bonds $(\mathrm{C}(9)-\mathrm{Fe}(1)$ and $\mathrm{C}(10)-\mathrm{Fe}(2)$), so that the $\mathrm{C}(9)-\mathrm{C}(10)$ bond is parallel to the $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ direction. The $\mathrm{C}(9)-\mathrm{C}(10)$ bond distance of 1.534 (7) \AA is typical for a single bond. The methyl groups have their expected staggered con-

Table VI. Sclected Distances (\AA) in $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (1)

$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$\mathrm{Fe}-\mathrm{Fe}$ 3.311 (1)	
$\begin{aligned} & \mathrm{Fe}(1)-S(1) \\ & \mathrm{Fe}(1)-\mathrm{S}(2) \\ & \mathrm{Fe}(2)-\mathrm{S}(1) \\ & \mathrm{Fe}(2)-\mathrm{S}(2) \end{aligned}$	$\left.\begin{array}{c} \text { Fe-S } \\ 2.312(2) \\ 2.310(2) \\ 2.306(2) \\ 2.310(2) \end{array}\right\}$	$2.310(3){ }^{\prime \prime}$
$\begin{aligned} & \mathrm{Fe}(1)-\mathrm{C}(1) \\ & \mathrm{Fe}(1)-C(3) \\ & \mathrm{Fe}(2)-\mathrm{C}(4) \\ & \mathrm{Fe}(2)-\mathrm{C}(6) \end{aligned}$	$\left.\begin{array}{c} \text { Fe-C(equitorisil) } \\ 1.802(6) \\ 1.802(5) \\ 1.799(5) \\ 1.801(6) \end{array}\right\}$	1.801(5)
$\begin{aligned} & \mathrm{Fe}(1) \mathrm{C}(2) \\ & \mathrm{Fe}(2) \mathrm{C}(5) \end{aligned}$	$\left.\begin{array}{r} \mathrm{Fe}-\mathrm{C}(\mathrm{axial}) \\ 1.859(6) \\ 1.858(5) \end{array}\right\}$	$1.859(6)$
$\begin{aligned} & \mathrm{Fe}(1) \mathrm{C}(9) \\ & \mathrm{Fe}(2)-\mathrm{C}(10) \end{aligned}$	$\left.\begin{array}{r} \mathrm{Fe}-\mathrm{C}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \\ 2.033(5) \\ 2.016(5) \end{array}\right\}$	2.024(1)
$C(9)-\mathrm{C}(10)$	$\begin{gathered} \mathrm{C}-\mathrm{C}_{(}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \\ 1.534(7) \end{gathered}$	
$\begin{aligned} & S(1)-C(7) \\ & S(2)-C(8) \end{aligned}$	$\left.\begin{array}{l} \text { S-C } \\ 1.816(5) \\ 1.827(5) \end{array}\right\}$	1.821 (8)
$\begin{aligned} & C(9)-F(1) \\ & C(9)-F(2) \\ & C(9)-F(1)^{\prime} \\ & C(9)-F(2)^{\prime} \end{aligned}$	$\begin{aligned} & \text { C-F } \\ & 1.357(9) \\ & 1.444(9) \\ & 1.430(11) \\ & 1.362(9) \end{aligned}$	
$\begin{aligned} & C(10)-F(3) \\ & C(10)-F(4) \\ & C(10)-F(3)^{\prime} \\ & C(10)-F(4)^{\prime} \end{aligned}$	$\left.\begin{array}{l} 1.552(9) \\ 1.300(8) \\ 1.241(9) \\ 1.617(10) \end{array}\right\}$	1.41(13)
$\begin{aligned} & C(1) O(1) \\ & C(2)-O(2) \\ & C(3) O(3) \\ & C(4)-O(4) \\ & C(5)-O(5) \\ & C(6)-O(6) \end{aligned}$	$\left.\begin{array}{l} C \equiv 0 \\ 1.1 .32(6) \\ 1.127(6) \\ 1.142(6) \\ 1.127(6) \\ 1.126(6) \\ 1.139(6) \end{array}\right\}$	$1.132(7)$

"Here and in subsequent distince and angle lables the number in prarentheses following a mean value is the larger standard deviation of a single observation as estimated from the inverse matrix or from the individual values on the assumption that they are from the same population.
figuration with respect to the $\mathrm{S}-\mathrm{Fe}$ bonds, as shown by the values for the $\mathrm{H}-\mathrm{C}-\mathrm{S}-\mathrm{Fe}$ torsion angles (Table IX). ${ }^{20}$

Model building of the dinuclear molecule of 1 shows that the two alternative positions for the fluorine atoms of the bridging $\mathrm{C}_{2} \mathrm{~F}_{4}$ group can be reached with only a slight deformation of the $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Fe}(2)-\mathrm{S}(2)$ ring, i.e. with slight shifts of the $\mathrm{C}(9)$ and $\mathrm{C}(10)$ carbon atoms. This observation explains why the disorder of the fluorine atoms has satisfactorily been resolved without taking account of alternative positions for the two carbon atoms $C(9)$ and $C(10)$ to which they are attached: the anisotropic thermal motion of the carbon atoms is sufficient to handle this. However, the eight $\mathrm{C}-\mathrm{F}$ bond distances vary from 1.357 (9) to 1.444 (9) \AA around atom $C(9)$ and from 1.240 (9) to 1.617 (10) \AA around atom $C(10)$. These variations are likely a manifestation of the disorder.
The crystal structure of $\mathbf{2}$ consists of the packing of eight dinuclear molecules. There are two independent dinuclear molecules, which we denote A and B. in the asymmetric unit.

Table VII. Selected Angles (deg) in $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (1)

$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	$\begin{aligned} & \mathrm{S}-\mathrm{Fe}-\mathrm{S} \\ & 80.49(5) \end{aligned}$	
$\mathrm{S}-\mathrm{Fe}-\mathrm{C}($ trans -cquatorial)		171.5(7)
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	171.6(2)	
$\mathrm{S}(\underline{2})-\mathrm{Fe}(1)-\mathrm{C}(3)$	171.7(2)	
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{C}(4)$	170.4(2)	
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(6)$	$172.1(2)$	
$\mathrm{S}(1)-\mathrm{Fe}-\mathrm{C}($ cis-equatori:al)		
$S(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	91.4(2)	$91.5(2)$
$\mathrm{S}(1)-\mathrm{Fc}(2)-\mathrm{C}(6)$	$91.6(2)\}$	91.5(2)
$\mathrm{S}(2)-\mathrm{Fe}-\mathrm{C}(\mathrm{cis}$-cquatorial)		
$\begin{aligned} & S(2)-F c(1)-C(1) \\ & S(2)-F c(2)-C(4) \end{aligned}$	$\left.\begin{array}{l}93.7(2) \\ 93.1(2)\end{array}\right\}$	93.4(2)
$\mathrm{S}(1)-\mathrm{Fe}-\mathrm{C}(: 1 \times \mathrm{ial})$		
$S(1)-\mathrm{Fc}(1)-\mathrm{C}(2)$	93.6(2) $\}$	93.5(2)
$S(1)-F c(2)-C(5)$	93.4(2) $\}$	93.5(2)
$\mathrm{S}(2)-\mathrm{Fe}-\mathrm{C}(1 \times \mathrm{i}, 1 \mathrm{l})$		
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(2)$	88.8(2)	88.6(2)
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(5)$	88.4(2) $\}$	
$\mathrm{S}-\mathrm{Fe}-\mathrm{C}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)$		
$S(1)-\mathrm{Fe}(1)-\mathrm{C}(9)$	83.2(2)	
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(9)$	87.3(2)	
$S(1)-\mathrm{Fe}(2)-\mathrm{C}(10)$	82.0(2)	
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(10)$	88.8(2)	
$\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$		
$\begin{aligned} & \mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2) \\ & \mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2) \end{aligned}$	$\left.\begin{array}{l}91.64(5) \\ 91.58(5)\end{array}\right\}$	91.61(5)
	Fe-S(1)-C(7)	107.6(2)
$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	107.8(1)	
$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{C}(7)$	107.5(2) $\}$	
	Fc-S(2)-C(8)	113.2(2)
$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{C}(8)$	$113.3(2)\}$	
$F \mathrm{~F}(2)-\mathrm{S}(2)-\mathrm{C}(8)$	113.1(2)	
Fe-C-F		
$\mathrm{Fe}(1) \mathrm{C}(9)-\mathrm{F}(1)$	$116.5(5)$	111.9
F(1)-C(9)-F(2)	109.4(4)	
$F(1)-C(9)-F(1)^{\prime}$	107.1(5)	
$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{F}(2)^{\prime}$	$114.0(5)$	
$F C(2)-C(10)-F(3)$	$105.3(4)$	
$\mathrm{Fe}(2)-\mathrm{C}(10)-\mathrm{F}(4)$	$117.5(5)$	
$\mathrm{Fe}(2)-\mathrm{C}(10)-\mathrm{F}(3)^{\prime}$	$120.8(5)$	
$\mathrm{Fe}(2)-\mathrm{C}(10)-\mathrm{F}(4)^{\prime}$	104.2(4)	
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$\mathrm{Fc}-\mathrm{C} \equiv \mathrm{O}$	178.4(5)
$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178.8(5)	
$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$178.3(5)\}$	
$\mathrm{Fc}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	178.5(5)	
Fe (2)-C(5)-O(5)	178.4(5)	
$\mathrm{Fe}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	178.1(5)	
C C-F		
$C(10)-C(9)-F(1)$	114.1(5)	106
$C(10)-C(9)-F(2)$	97.1(5)	
$C(10)-C(9)-F(1)^{\prime}$	$97.8(6)$	
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{F}(2)^{\prime}$	$118.6(6)\}$	
$C(9)-C(10)-F(3)$	97.4(5)	
$C(9)-C(10)-F(4)$	$117.0(5)$	
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{F}(3)^{\prime}$	116.1(6)	
$C(9)-C(10)-F(4)^{\prime}$	93.3(7)	
	$\mathrm{F}-\mathrm{C}-\mathrm{F}$	99
$\mathrm{F}(1)-\mathrm{C}(9)-\mathrm{F}(2)$	$100.9(5)$	
$F(1)^{\prime}-C(9)-F(2)^{\prime}$	100.0(6)	
$F(3)-C(10)-F(4)$	$97.8(6)$	
$F(3)^{\prime}-C(10)-F(4)^{\prime}$	98.2(7)	

Figure 6. A stercoscopic view ol : molecule of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ showing the disorder of the fluorine atoms. The vibrational ellipsoids are drawn at 50 \% probabilisy level. Hydrogen atoms are omitled.

Figure 7. Sicreoscopic view ol': unit cell ol $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. The x axis is perpendieular, the I axis goes from right to lelt, and the : axis comes out of the paper. The vibrational ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted.

A stereoscopic packing diagram of the unit cell is shown in Figure 7. Bond distances, bond angles, and least-squares planes are listed in Tables X, XI, and XII. ${ }^{20}$ respectively. Figure 8 shows a perspective view of one molecule of compound 2 . The dinuclear molecule has roughly a mirror plane which contains atoms $S(1), S(2)$, and $C(9)$ (see Table XII). Each iron atom is octahedrally coordinated to two bridging sulfur atoms of the methylthiolato groups. three carbon atoms of the carbonyl groups, and the bridging carbon atom of the $\mathrm{CF}-\mathrm{CF}_{3}$ group. The "flap" angle between the two planes containing S(1), S(2). and the equatorial carbon atoms of carbonyl groups averages $107.6(5)^{\circ}$ (Table XII). The mean value for the separation of the two iron atoms is 2.963 (6) \AA and the mean $\mathrm{Fe}(1)-\mathrm{S}-\mathrm{Fe}(2)$ angle is $79.4(2)^{\circ}$. The $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ core is thus more compact than in 1 but less than in $\left(\mu\left(\mathrm{SC}_{2} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$. The $\mathrm{CF}-\mathrm{CF}_{3}$ group behaves as a bridging carbene, the fluorine atoms of the trifluoromethyl portion being in a staggered position with respect to the $C(9)-F(1)$ bond in both molecules A and B. as can be seen in Figure 8 or from $\mathrm{F}(i)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{F}(1)(i=2.3$. or 4) torsion angles given in Table X111. 20 The average $\mathrm{Fe}-\mathrm{C}$ bond of $2.037 \AA$ in $\mathbf{2}$ is in the expected range ${ }^{27,28}$ for a carbene group bridging two metal atoms. The two methyl groups occupy positions which give an anti configuration for both molccules A and B . For the methyl group in the endo position. in both molecules A and B the hydrogen atoms are eclipsed with respect to the $\mathrm{S}-\mathrm{Fe}$ bonds (see Table XIll for $\mathrm{H}-\mathrm{C}-\mathrm{S}-\mathrm{Fe}$ torsion angles). For the methyl group in the exo position. the hydrogen atoms are in the staggered configuration in molecule \hat{A} and in the eclipsed configuration in molecule B with respect to the $\mathrm{S}-\mathrm{Fe}$ bonds. This difference in the configuration of the H atoms on the exo methyl group is the major one between molecules A and B.

The average $\mathrm{Fe}-\mathrm{C}$ (carbonyl) distance trans to any bridging sulfur atom ($1.801 \AA$ for $1,1.790 \AA$ for 2) lies within the expected range. ${ }^{99}{ }^{33}$ The Fe-C axial carbonyl distance, however, is significantly longer (1.859 (6) \AA for $1,1.848$ (5) \AA for 2) suggesting facile CO abstraction which is consistent with the formation of the green product 3 .

The $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ core varies considerably from compound 1 to compound 2 and is compared with those observed in various

Figure 8. A perspective represemation of one of the two independent molecules of $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}\left(\mathrm{CO}_{6}\right.$.

Table X. Selected Distances (\AA) in $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{0}$ (2)

	molecule \wedge	molecule B	alv values
FC FC			
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.958(1)$	2.969 (1)	$2.963(6)$
$\mathrm{Fe}-\mathrm{S}$			
$\mathrm{Fe}(1)-\mathrm{S}(1)$	2.316 (1)	2.321(2)	
$\mathrm{Fe}(1) \mathrm{S}(2)$	2.314 (1)	$2.323(1)$	$2.320(4)$
$\mathrm{Fe}(2)-\mathrm{S}(1)$	$2.319(1)$	$2.316(1)\}$	$2.320(4)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	2.323(1)	$2.326(1)$	

			$1.790(7)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$1.785(5)$	1.787(5)	
$\mathrm{Fe}(1)-\mathrm{C}(2)$	1.791 (5)	$1.784(5)$	
$\mathrm{Fc}(2)-\mathrm{C}(4)$	$1.805(5)$	$1.788(5)$	
$\mathrm{Fe}(2)-\mathrm{C}(5)$	$1.786(5)$	1.793(5))	
Fe-C(axial)			
$\mathrm{Fe}(1)$ C(3)	$1.855(5)$	$1.842(5)$)	$1.848(5)$
$\mathrm{Fe}(2)-\mathrm{C}(6)$	$1.849(5)$	1.848(5)	
Fe C(carbene)			
$\mathrm{Fe}(1)-\mathrm{C}(9)$	$2.028(5)$	$2.048(5)\}$	$2.037(7)$
$\mathrm{Fe}(2)-\mathrm{C}(9)$	$2.036(5)$	$2.035(5)$)	-.037(
C-C			
$C(9) \cdot \mathrm{C}(10)$	$1.487(7)$	1.488 (7)	$1.488(7)$
C(9)-F			
$C(9)-F(1)$	$1.444(5)$	$1.436(5)$	1.440(5)
CF_{3}			
$C(10)-F(2)$	$1.336(5)$	1.344(6)	
$C(10)-\mathrm{F}(3)$	$1.358(5)$	$1.374(6)\}$	1.354(14)
$C(10)-F(4)$	1.364 (6)	1.347(5)	
S-C			
$\mathrm{S}(1)-\mathrm{C}(7)$	$1.820(5)$	1.810(5)	$1.816(6)$
S(2)-C(8)	$1.812(4)$	1.821(4)	1.816 (6)
$\mathrm{C}=\mathrm{O}$			
$\mathrm{C}(1)-\mathrm{O}(1)$	1.1.37(5)	1.140(6)	
$\mathrm{C}(2) \mathrm{O}(2)$	1.143 (5)	$1.143(5)$	
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.130(5)$	$1.135(5)$	$1.137(6)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.127(5)$	$1.138(5)$	1.137(
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.139(5)$	1.143(6)	
$\mathrm{C}(6)-\mathrm{O}(6)$	$1.131(5)$	1.132(5)	

$\left(\mu(\mathrm{SR}) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ complexes ${ }^{29}{ }^{31}$ in Table XIV. As pointed out earlier. ${ }^{34}$ different substituents on the sulfur bridging atom

Table XI. Selected Bond Angles (deg) in $\mu\left(\mathrm{SCH}_{3}\right)_{2} \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

	$\begin{gathered} \text { molecule } \\ A \end{gathered}$	$\begin{gathered} \text { molecule } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { av } \\ \text { values } \end{gathered}$
$\mathrm{S}-\mathrm{Fe}-\mathrm{S}$			
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	81.62(5)	81.49(4)	81.50(11)
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{S}(2)$	81.36(5)	81.53(4)	
	$\mathrm{S}-\mathrm{Fe}-\mathrm{C}$ (trans equatorial carbonyl)		170.2(1.5)
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	168.3(1)	168.5(2)	
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(2)$	$170.6(1)$	$171.7(2)$	
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{C}(4)$	$169.6(2)$	$169.6(1)$	
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(5)$	170.2(1)	173.1(1)	
	$\mathrm{S}-\mathrm{Fe}-\mathrm{C}$ (cis equatorial carbonyl)		92.0(2.1)
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	89.1(1)	90.4(2)	
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(1)$	94.0(1)	94.8(1)	
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{C}(5)$	89.6(1)	92.3(1)	
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(4)$	93.9(2)	91.6(1)	
	$\mathrm{S}-\mathrm{Fe}-\mathrm{C}($ axial carbonyl)		91.5(2.6)
$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	95.1 (1)	94.1(1)	
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$	88.0(1)	89.4(1)	
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{C}(6)$	93.0(1)	91.9(1)	
$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{C}(6)$	88.8(1)	91.9(1)	
	$\mathrm{S}-\mathrm{Fe}-\mathrm{C}$ (carbene)		79.4(6)
$\mathrm{S}(1)-\mathrm{Fe}(1) \cdot \mathrm{C}(9)$	$79.2(1)$	78.5(1)	
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{C}(9)$	79.9(1)	79.8(1)	
$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{C}(9)$	79.0(1)	78.9(1)	
$S(2)-\mathrm{Fe}(2)-\mathrm{C}(9)$	79.5 (1)	80.0(1)	
	$\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$		79.4(2)
$\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$	79.31 (4)	79.61 (4)	
$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{Fe}(2)$	79.25(4)	$79.37(4)$	
	$\mathrm{Fe}-\mathrm{S}-\mathrm{CH}_{3}(\mathrm{exo})$		109.0(5)
$F e(1)-S(1)-C(7)$	108.5(2)	108.8(2)	
$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{C}(7)$	109.4(2)	109.3(2)	
	$\mathrm{Fe}-\mathrm{S}-\mathrm{CH}_{3}$ (endo)		112.4(1.1)
$\mathrm{Fe}(1)-\mathrm{S}(2)-\mathrm{C}(8)$	113.4(2)	$111.0(2)$	
$\mathrm{Fe}(2)-\mathrm{S}(2)-\mathrm{C}(8)$	$111.7(2)$	$112.2(2)$	
	$\mathrm{Fe}-\mathrm{C}-\mathrm{Fe}$		93.4(1)
$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{Fe}(2)$	93.4(1)	93.3(1)	
	$\mathrm{Fe}-\mathrm{C}-\mathrm{F}$		112.4(7)
$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{F}(1)$	113.1(3)	$111.9(3)$	
$F e(2)-C(9)-F(1)$	$111.6(3)$	$112.9(3)$	
	$\mathrm{Fe}-\mathrm{C}-\mathrm{C}$		119.4(1.2)
$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	118.4(3)	118.3(3)	
$\mathrm{Fe}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	120.7(3)	120.0(3)	
	$\mathrm{Fe}-\mathrm{C} \equiv \mathrm{O}$		178.0(9)
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	178.3(4)	178.6(5)	
$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178.2(4)	177.8(5)	
$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$176.5(4)$	$178.7(4)$	
$\mathrm{Fe}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	178.6(4)	178.2(4)	
$\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	179.7(4)	177.5(4)	
$\mathrm{Fe}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	177.0(4)	177.2(4)	
	F-C-C		100.7(6)
$F(1)-C(9)-C(10)$	100.3(4)	101.1(3)	
	$\mathrm{F}-\mathrm{C}-\mathrm{CF}_{3}$		112.5(5)
$C(9)-C(10)-F(2)$	$112.8(4)$	112.8(4)	
$C(9)-C(10)-F(3)$	$112.1(4)$	$111.9(4)$	
$C(9)-C(10)-F(4)$	$112.2(4)$	$113.3(4)$	
	$\mathrm{F}-\mathrm{C}-\mathrm{F}$ of CF_{3}		106.2(6)
$F(2)-C(10)-F(3)$	106.5(4)	106.0(4)	
$F(2)-C(10)-F(4)$	107.0(4)	106.8(4)	
$F(3)-C(10)-F(4)$	105.7(4)	105.4(4)	

Table XIV. Comparison of Selected Average Values of Distances (\AA) and Angles (deg) in $\mu\left(\mathrm{SCH}_{3}\right) \mu\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(1)$ and $\mu\left(\mathrm{SCH}_{3}\right) \mu\left(\mathrm{FCCF}_{3}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathbf{2})$ with Those in $\left.\mu(\mathrm{SR}) \mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}$ Compounds

	1	2	$\begin{gathered} \text { range for } \\ (\mu(\mathrm{SR})- \\ \left.\mathrm{Fe}(\mathrm{CO})_{3}\right)_{2}{ }^{a} \\ \hline \end{gathered}$
Distances			
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	3.311 (1)	2.963(6)	2.507-2.540
$\mathrm{Fe}-\mathrm{S}$	$2.310(3)$	2.320 (4)	2.248-2.281
$\mathrm{Fe}-\mathrm{C}$ (equatorial)	1.801 (5)	$1.790(7)$	1.772-1.810
$\mathrm{Fe}-\mathrm{C}$ (axial)	$1.859(6)$	1.848 (5)	
S-S	2.986 (2)	$3.029(7)$	2.817-2.932
Angles			
$\mathrm{Fe}-\mathrm{S}-\mathrm{Fe}$	91.61 (5)	79.4(6)	67.0-68.8
$\mathrm{S}-\mathrm{Fe}-\mathrm{C}($ trans $)$	171.5(7)	170.2(1.5)	
$\mathrm{S}-\mathrm{Fe}-\mathrm{C}(\mathrm{cis})$	91.5-93.4	$92.0(2.1)$	
$\mathrm{S}-\mathrm{Fe}-\mathrm{C}(\mathrm{axial})$	88.6-93.5	91.5(2.6)	
flap angle	135.0	107.6	87.9-95.2

of thiolate groups produce only small differences in the geometry of the central $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ core: the ranges are reported in Table XIV. This relatively constant geometry can be considered typical when the bridging atoms are sulfur and when the bent $\mathrm{Fe}-\mathrm{Fe}$ bond is present. This geometry is only slightly affected when these complexes are protonated to yield hy-drido-bridged species. ${ }^{33}$ But, as expected, there is a considerable change in $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ geometry when a carbene (compound 2) or C_{2} (compound 1) bridge is formed. Major changes occur in the "flap" angle, the Fe-S-Fe angle. and the Fe-Fe distance. while the $\mathrm{Fe}-\mathrm{S}$ distances are only slightly affected (Table XIV). The changes naturally are larger for compound $\mathbf{1}$ than for compound 2.

Acknowledgments. J.J.B. wishes to acknowledge the receipt of a NSF-CNRS Exchange Fellowship, which has made his leave from the University of Toulouse possible. This work was supported in part at Northwestern University by the National Science Foundation (Grant CHE76-10335).

Supplementary Material Available: Tables of observed and calculated structure amplitudes for compounds 1 and 2 . root-mean-square amplitudes of vibration (Tables 111 and V), least-squares planes (Tables VIII and XII), and torsion angles (Tables IX and XIII) (36 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) Laboratoire de Chimie de Coordination. (b) Northwestern University. (2) (a) Bailey, Jr., W. I.; Chisholm, M. H.; Cotton, F. A.; Murillo, C. A.; Rankel, L. A. J. Am. Chem. Soc. 1978, 100, 802-806. (b) Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Rankel, L. A. Ibid. 1978, 100, 807-811.
(3) Chisholm. M. H.; Cotton. F. A.; Extine, M. W.; Kelly, R. L. J. Am. Chem. Soc. 1978, 100, 3354-3358.
(4) Davidson, J. L.; Sharp, D. W. A. J. Chem. Soc., Dalton Trans. 1975. 2283-2287.
(5) Hoehn, H. H.: Pratt, L.; Watterson, K. F.; Wilkinson, G. J. Chem. Soc. 1961, 2738-2745.
(6) Booth, B. L.; Haszeldine, R. N.; Mitchell, P. R.; Cox. J. J. Chem. Commun. 1967. 529-530.
(7) Fischer, E. O.: Maasbol, A. Angew. Chem. 1964, 76, 645
(8) Huttner, G.; Regler, D. Chem. Ber. 1972, 105, 2726.
(9) Yamamoto, T.; Garber, A.R.; Wilkinson, J. R.; Boss, C. B.; Streib, W. E.; Todd, L. J. J. Chem. Soc., Chem. Commun. 1974, 354-356.
(10) Aumann, R.; Wormann. H.; Krugger, C. Angew. Chem., Int. Ed. Engl. 1976. 15, 609-610.
(11) Cook, P. M.; Dahl, L. F.; Dickerhoof, D. W. J. Am. Chem. Soc. 1972. 94, 5511-5513.
(12) Herrmann. W. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 800-812, and references cited therein.
(13) Mathieu, R.; Poilblanc, R. J. Organomet. Chem. 1977, 142, 351-355.
(14) Corfield, P. W. R.: Doedens, R. J.: Ibers, J. A. Inorg. Chem. 1967. 6. 197-204. Doedens, R. J.: Ibers, J. A. Ibid. 1967, 6, 204-210.
(15) See, for example, Waters, J. M.; Ibers. J. A. Inorg. Chem. 1977, 16, 3273-3277.
(16) The Northwestern absorption program, AGNOST, includes both the Cop-pens-Leiserowitz-Rabinovich logic for Gaussian integration and the

Tompa-De Meulenaur analytical method. In addition to various local programs for the CDC 6600 computer, modified versions of the following were employed: MULTAN, direct method program of Main, Germain, and Woolfson, Zalkin's FORDAP Fourier summation program. Johnson's ORTEP thermal ellipsoid plotting program, and Busing's and Levy's ORFFE error function program. Our full-matrix least-squares program, NUCLS, in its nongroup form, closely resembles the Busing-Levy ORFLS program.
(17) Cromer, D. T.; Waber. J. T. "International Tables for X-ray Crystallography", Vol. IV: Kynoch Press: Birmingham, England, 1974: Table 2.2A. Cromer, D. T. Ibid., Table 2.3.1.
(18) Stewart. R. F.: Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42. 3175-3179.
(19) Ibers. J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781-782.
(20) See paragraph at end of paper regarding supplementary material.
(21) Green. M.: Laguna, A.: Spencer, J. L.: Stone. F. G. A. J. Chem. Soc., Datton Trans. 1977, 1010-1016
(22) McClellan, W. R. J. Am. Chem. Soc. 1961, 83, 1598-1601.
(23) Tattershall, B. W.: Rest, A. J.; Green, M.; Stone, F. G. A. J. Chem. Soc.
1968. 899-902
24) Churchill, M. R.: DeBoer, B. G.: Shapley, J. R.: Keister, J. B. J. Am. Chem. Soc. 1976. 98. 2357-2358.
(25) Reger, D. L.: Dukes, M. D. J. Organomet. Chem. 1978, 153, 67-72
(26) Fields, R.; Godwin, G. L.; Haszeldine, R. N. J. Chem. Soc., Dalton Trans. 1975, 1867-1872
(27) Huttner, G.: Gartzke, W. Chem. Ber. 1972, 105, 2714.
(28) Yamamoto, Y.; Aoki, K.; Yamazaki, H. J. Am. Chem. Soc. 1974, 96. 2647-2648
(29) Dahl. L. F.; Wei, C. H. Inorg. Chem. 1963. 2. 328-333.
30) Henslee, W.; Davis, R. E. Cryst. Struct. Commun. 1972, 403. 185.
(31) Coleman, J. M.; Wojcicki, A.; Pollick, P. J.; Dahl, L. F. Inorg. Chem. 1967. 6. 1236-1242.
(32) Le Borgne, G.; Grandjean, D.; Mathieu, R.; Poilblanc, R. J. Organomet. Chem 1977, 131, 429-438
(33) Savariault. J. M.: Bonnet. J. J.: Mathieu. R.: Galy, J. C. R. Acad. Sci., Ser C 1977, 284, 663-665.
(34) Clegg, W. Inorg. Chem. 1976, 15, 1609-1613

Structure of η^{3}-Cyclooctenyltris(trimethyl phosphite)iron(I). Bonding of the η^{3}-Alkenyl Group to 16-, 17-, and 18-Electron ML_{3} Systems

R. L. Harlow, R. J. McKinney, and S. D. Ittel*
Contribution No. 2673 from the Central Research and Development Department. E. I. du Pont de Nemours and Company, Experimental Station. Wilmington. Delaware 19898. Received June 13. 1979

Abstract

The crystal and molecular structure of $\mathrm{Fe}\left(\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{13}\right)\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{3}$ has been determined at $-80^{\circ} \mathrm{C}$ by X -ray diffraction. The monoclinic crystals ($C 2 / c$) have unit cell dimensions $a=14.940$ (3) $\AA, b=11.626$ (3) $\AA, c=29.952$ (5) $\AA . \beta=$ $103.88(2)^{\circ}$. and $V=5050.5 \AA^{3}$. Full-matrix least-squares refinement led to $R\left(F_{0}\right)=0.035$ and $R_{n}\left(F_{0}\right)=0.036$. The coordination sphere about the iron atom is a distorted square pyramid if the η^{3}-cyclooctenyl group is considered to be a bidentate ligand. The η^{3}-allylic group is symmetrical but skewed with respect to the basal plane. This twisting allows a hydrogen atom on a carbon atom attached to the η^{3}-allylic group to have a very weak (2.77 (2) \AA) interaction with the metal center. Extended Hückel theory, with the inclusion of two-body repulsion, has been used to reproduce molecular geomelries, including bond lengths, of 16-, 17-, and 18 -electron complexes of the type $\left[\mathrm{M}\left(\eta^{3}\right.\right.$-alkenyl $)\left(\mathrm{P}(\mathrm{OMe})_{3}\right]^{+x}$. Barriers to several intramolecular rearrangements have been calculated for these species and agree well with NMR and ESR measurements. The bonding in the 16-17-, and 18 -electron species is discussed.

Introduction

The dimeric species. $\left[\mathrm{Fe}\left(\eta^{3} \text {-allyl }\right)(\mathrm{CO})_{3}\right]_{2}$. prepared by a

one-electron reduction of $\mathrm{FeX}\left(\eta^{3}\right.$-allyl $)(\mathrm{CO})_{3}$ complexes (where $X=$ halide), has been shown to exist in equilibrium with its paramagnetic monomer. ${ }^{1-3}$ This monomer-dimer cquilibrium is very sensitive to steric effects. Thus, if substituents are added to the allyl group. ${ }^{1}$ or one or more of the carbonyl ligands are replaced with phosphorus litgands. ${ }^{1,2}$ the equilibrium is shifted dramatically toward the monomeric species.

The phosphite complex $\left[\mathrm{Fe}\left(\eta^{3}\right.\right.$-cyclooctenyl) $(\mathrm{P}(\mathrm{O}$ $\left.\left.\mathrm{Me})_{3}\right)_{3}\right]\left[\mathrm{BF}_{4}\right]^{4,5}(\mathbf{1})$ undergoes a similar one-electron reduction to give the monomeric species $\mathrm{Fe}\left(\eta^{3}\right.$-cyclooctenyl)$\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{3}{ }^{6}(\mathbf{2})$. Complex 2 shows no tendency to form a

diamagnetic dimer. Additionally, it is fluxional on the ESR time scale. showing hyperfine coupling to three nonequivalent ${ }^{7}$ phosphorus nuclei in slow exchange at $-140^{\circ} \mathrm{C}$. As the system is warmed a dynamic process begins to equilibrate the two similar phosphorus nuclei until at $-60^{\circ} \mathrm{C}$ the spectrum appears as a doublet of triplets. As the system is warmed further. a second. independent fluxional process begins to equilibrate all three phosphorus nuclei, giving a quartet at $140^{\circ} \mathrm{C}$. While we were able to simulate the permutational behavior of the phosphorus nuclei. without some knowledge of the ground-state geometry, we were unable to draw any conclusions about the physical dynamic process related to that permutational behavior.

The crystal structure of the dimeric species $\left[\mathrm{Fe}\left(\eta^{3}\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right]_{2}$ has been reported. ${ }^{3}$ but from spectroscopic measurements the solution structure of $\mathbf{2}$ is clearly of lower symmetry than would be expected for half of the dimer. Two

